Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1233113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559730

RESUMO

Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.


Assuntos
Apresentação de Antígeno , Luminescência , Humanos , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos
2.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804934

RESUMO

High levels of tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME) are associated with a survival benefit in various cancer types and the targeted (re)activation of TILs is an attractive therapeutic anti-cancer approach that yields curative responses. However, current T cell targeting strategies directed at known immune checkpoints have not increased objective response rates for all cancer types, including for epithelial ovarian cancer (EOC). For this reason, the identification of new immune checkpoints that regulate T cell immunity remains of great interest. One yet largely uninvestigated checkpoint of potential interest is the G protein-coupled receptor 56 (GPR56), which belongs to the adhesion GPCR family. GPR56 was originally reported to function in cerebral cortical development and in anti-depressant response, but also in cancer. Recently, GPR56 was identified as an inhibitory receptor expressed on human NK cells that by cis-interaction with the tetraspanin CD81 attenuated the cytotoxic activity of NK cells. This NK cell checkpoint could be blocked by an GPR56 antibody, leading to increased cytotoxicity. Interestingly, GPR56 expression has also been reported on cytokine producing memory CD8 T lymphocytes and may thus represent a T cell checkpoint as well. Here, GPR56 mRNA expression was characterized in the context of TILs, with GPR56 expression being detected predominantly in tumor infiltrating CD8 T cells with a cytotoxic and (pre-)exhausted phenotype. In accordance with this mRNA profile, TILs from ovarian cancer patients expressed GPR56 primarily within the effector memory and central memory T cell subsets. On T cells from healthy donors the expression was limited to effector memory and terminally differentiated T cells. Notably, GPR56 expression further increased on TILs upon T cell receptor (TCR)-mediated stimulation in co-cultures with cancer cells, whereas GPR56 expression on healthy primary human T cells did not. Further, the ectopic expression of GPR56 significantly reduced the migration of GPR56-positive T cells. Taken together, GPR56 is a potential immune-checkpoint in EOC found on (pre-)exhausted CD8 TILs that may regulate migratory behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...